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In this note we prove that for equilibrium states of axiom A systems having positive
dimension the time τB (x) needed for a typical point x to enter for the first time in a
typical ball B with radius r behaves for small r as τB (x) ∼ r−d where d is the local
dimension of the invariant measure at the center of the ball. A similar relation is proved
for a full measure set of interval exchanges. Some applications to Birkoff averages of
unbounded (and not L1) functions are shown.
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1. INTRODUCTION

It is well known by classical recurrence results that a typical orbit of a dynamical
systems comes back (in any reasonable neighborhood) near to its starting point.
The quantitative study of recurrence quantifies the speed of this coming back,
estimating, for example, how much time is needed to come back in any ball
centered in the starting point (the reader can find and exposition of more and
less recent developments about this kind of questions in the survey(7)). It turns
out that in many cases the scaling law of return times is related to the dimension
of the invariant measure of the system. More precisely, let us consider a starting
point x , a ball B(x, r ) and the time τB(x,r )(x) needed for the starting point x
to come back to B(x, r ). With these notations we have, for example,(18,19) that
in exponentially mixing systems or positive entropy (with some small technical
assumptions) systems over the interval τB(x,r )(x) ∼ r−d(x), where d(x) is the local
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dimension at x .2 Moreover(1,3) in general finite measure preserving systems the
recurrence gives a lower bound to the dimension (limr→0

log τB(x,r )(x)
− log r ≤ d(x)).

A similar and related (see e.g. Ref. (16)) problem is about the time needed for
a typical point y of an ergodic system to enter in some neighborhood of another
point x . This leads to the hitting time (also called waiting time) indicators. For
example let us denote by τB(x,r )(y) the time needed for the point y to enter in
the ball B(x, r ) with center x and radius r (this in some sense generalizes the
recurrence because we are allowed to consider an arriving point x different from
the starting point y). We consider the scaling behavior of this time for small r . The
hitting time indicator will have value R if τB(x,r )(y) ∼ r−R (precise definitions in
Section 2). Again, there are relations with the local dimension. Some general
relations are proved in Ref. (9) (see Theorem 2) and show that the hitting time
indicator gives an upper bound to the dimension. Moreover there is a class of
systems where the waiting time indicator is equal to dimension. This class of
systems includes for example(9) systems having exponential distribution of return
times in small balls (this includes many more or less hyperbolic systems over
the interval, see Ref. (5)). We remark that exponential return times in balls is
conjectured but (as far as we know) yet not proved in general Axiom A systems,
thus equality between hitting time and dimension for axiom A does not follow from
such result. A similar result, for systems on the interval preserving an absolutely
continuous invariant measure was also obtained by(14).

We want to remark that there are also some relevant cases where the equality
between recurrence or hitting time with dimension does not hold, hence this kind
of questions are not trivial. Such cases includes rotations by Liuouville numbers
(see Refs. (1, 13)), and Maps having an indifferent fixed point and infinite invariant
measure(10).

A further motivation for this kind of studies is that the relations between re-
currence (and similar) with dimension are used in the physical literature(12,11,15) to
provide numerical methods for the study of the Hausdorff dimension of attractors.
Since recurrence gives a lower bound to dimension and hitting time gives an upper
bound, the combined use of these may produce efficient numerical estimators for
the dimension of attractors (see also Ref. (8)).

The main result of this note is to show that in nontrivial nice examples such
as Axiom A systems with positive dimension and typical Interval Exchanges

2 If X is a metric space and µ is a measure on X the upper local dimension at x ∈ X is defined

as dµ(x) = limsupr→0
log(µ(B(x,r )))

log(r ) = limsupk∈N,k→∞
− log(µ(B(x,2−k )))

k . The lower local dimension

dµ(x) is defined in an analogous way by replacing limsup with liminf. If dµ(x) = dµ(x) = d almost ev-
erywhere the system is called exact dimensional. In this case many notions of dimension of a measure
will coincide. In particular d is equal to the dimension of the measure: d = inf{dimH Z : µ(Z ) = 1}.
This happen for example in systems having nonzero Lyapunov exponent almost everywhere (see for
example the book in Ref. (17)).
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Transformations, the hitting time indicator equals almost everywhere the local
dimension dµ(x) of the considered measure. Hence, in such systems, for typical
x and y we have τB(x,r )(y) ∼ r−d(x). As an application of these results we give an
estimation for the Birkoff averages of functions having some asymptote and no
finite L1 norm. Here the Birkoff average will increase to infinity as the number
of iterations increases (this is trivially by ergodic theorem). The hitting time
indicator will give an estimation about the going to infinity speed of such average
(Section 5).

Since by the above result the hitting time is related to local dimension we
can also (in nice systems) relate this speed to the local dimension of the invariant
measure at the point where the asymptote is (see Remark 15).

2. GENERALITIES AND A CRITERIA FOR HITTING TIME

AND DIMENSION

In the following we will consider a discrete time dynamical system (X, T )
were X is a separable metric space equipped with a Borel finite measure µ and
T : X → X is a measurable map.

Let us consider the first entrance time of the orbit of y in the ball B(x, r )
with center x and radius r

τr (y, x) = min({n ∈ N, n > 0, T n(y) ∈ B(x, r )}).
By considering the power law behavior of τr (y, x) as r → 0 let us define the hitting
time indicators as

R(y, x) = limsup
r→0

log(τr (y, x))

− log(r )
, R(y, x) = liminf

r→0

log(τr (y, x))

− log(r )
3 .

If for some r, τr (y, x) is not defined then R(y, x) and R(y, x) are set to be
equal to infinity. The indicators R(x) and R(x) of quantitative recurrence defined
in Ref. (1) are obtained as a special case, R(x) = R(x, x), R(x) =R(x, x).

We recall some basic properties of R(y, x):

Proposition 1. R(y, x) satisfies the following properties

• R(y, x) = R(T (y), x), R(y, x) = R(T (y), x).
• If T is α − Hoelder , then R(y, x) ≥ αR(y, T (x)), R(y, x) ≥

αR(y, T (x)).
• If we consider T n (n > 0) instead of T ; RT (y, x) ≤ RT n (y, x), RT (y, x) ≤

RT n (y, x).

3 We remark that as in the local dimension definition, since τr (y, x) is increasing as r decreases then

R(y, x) =limr→0
log(τr (y,x))

− log(r ) = limn∈N,n→∞
log(τ2−n (y,x))

n .
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Proof: The first two points comes from Ref. (9) (and they comes directly from
definitions). For the third one let us denote with τ and τ ′ the hitting time with
respect to T and T n . By definition RT (y, x) = limsupr→0

log(τr (y,x))
− log(r ) but τr (y, x) ≤

nτ ′
r (y, x) and then log(τr (y,x))

− log(r ) ≤ log(τ ′
r (y,x))+log n
− log(r ) . Taking the limsup we are done. The

same can be done for the liminf. �

In general systems the quantitative recurrence indicator gives only a lower
bound on the dimension(1,3). The waiting time indicator instead give an upper
bound(9) to the local dimension of the measure at the point y. This is summarized
in the following

Theorem 2. If (X, T, µ) is a dynamical system over a separable metric space,
with an invariant measure µ. For each x

R(y, x) ≥ dµ(x) , R(y, x) ≥ dµ(x) (1)

holds for µ almost each y. Moreover, if X is a closed subset of R
n, then for almost

each x ∈ X

R(x, x) ≤ dµ(x) , R(x, x) ≤ dµ(x) . (2)

As remarked in the introduction a natural question which is important also for
the numerical applications is whether equality can replace the above inequalities.
The following is a general criteria that ensures (together with Theorem 2) for
typical points, equality between hitting time and local dimension.

Lemma 3. Let x ∈ X and

N En
r (x) = X − B(x, r ) ∩ T −1(X − B(x, r )) ∩ · · · ∩ T −n(X − B(x, r ))

be the set of points that after n steps Never Enters into B(x, r ). If for each

ε > 0 we have
∑

µ(N E [µ(B(x,2−n ))−1−ε ]
2−n ) < ∞ then for almost each y it holds

R(y, x) ≤ dµ(x) and R(y, x) ≤ dµ(x).

Proof: The proof follows by a Borel Cantelli argument. Let

Rε = {y ∈ X, R(y, x) ≥ (1 + ε)dµ(x)}.
If we prove that this set has measure zero for each ε we are done. If we know that∑

µ(N E [µ(B(x,2−n ))−1−ε ]
2−n ) < ∞ for some ε, this means that the set of points such that

τ2−n (y, x) > [µ(B(x, 2−n))−1−ε] for infinitely many n has zero measure. Taking
logarithms and dividing by n we have log(τ2−n (x,y))

n ≤ (1 + ε) log(µ(B(x,2−n )))
−n eventu-

ally (as n increases) for a full measure set and then R(y, x) = lim sup log(τ2−n (x,y))
n ≤

(1 + ε) lim sup log(µ(B(x,2−n )))
−n = (1 + ε)dµ(x) on a full measure set. This is true
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for each ε and we have the statement. The same can be done for the proof of
R(y, x) ≤ dµ(x). �

3. AXIOM A SYSTEMS

In this section we will consider Axiom A systems. We will apply the properties
of Gibbs measures to prove that they satisfy Lemma 3. We will prove the following

Theorem 4. If X is a basic set of an axiom A diffeomorphism, µ is an equilibrium
measure for an Hoelder potential defined on X with dµ(x) 
= 0, then (X, T, µ)
satisfies Lemma 3 at x and hence for µ almost each y it holds

R(y, x) = dµ(x), R(y, x) = dµ(x).

We remark that such an equilibrium measure must be exact dimensional (see
note 3), hence if the dimension of the measure µ is positive then dµ(x) > 0 almost
everywhere.

In the proof of Theorem 4 we will use Lemma 3 approximating balls by
union of cylinders of some Markov partition. The measure of cylinders is then
estimated by a repeated application of the weak Bernoulli property of the equilib-
rium measure. This property implies that the measure of the intersection of two
cylinders is near to the product of the respective measures if the time distance of
such cylinders is big enough (see Eq. (3)). At each application of the Bernoulli
property the estimation for the measure of the cylinder we are considering then
decreases by a multiplicative factor and there is an additive error term which may
be small as wanted. For this we start with a general estimation on the behavior of
this kind of real sequences.

Lemma 5. Let 0 < m < 1 and an, n ∈ N be defined by{
an = an−1m + εn

a0 = m2

where εn = 2n+1
n2(n+1)2 = 1

n2 − 1
(n+1)2 then for n ≥ 2 it holds an ≤ m[ n

2 ]

1−m + 4
n2 .

Proof: We have

an = mn+2 + mn−1ε1 + mn−2ε2 + mn−3ε3 + · · · + mεn−1 + εn.

Since εi < 1 and m < 1 then an ≤ ∑n
[n/2] mi + ∑n

[n/2] εi = m[ n
2 ]−mn

1−m +
1

([n/2])2 − 1
([n/2]+1)2 ≤ m[ n

2 ]

1−m + 4
n2 . �

Proof of Theorem 4: We already know that (Theorem 2) R(y, x) ≥ dµ(x) and

R(y, x) ≥ dµ(x) where y varies in a full measure set. For the opposite
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inequalities, first we remark that (see Ref. (6) p. 72) X = X1 ∪ · · · ∪ Xl where
T (Xi ) = Xi+1, (T (Xl) = X1) and T l |Xi is topologically mixing.

By Proposition 1 we can suppose that x, y belongs to the same Xi and that T is
topologically mixing (indeed replacing T with T l we have a mixing transformation
on Xi , moreover by the third point of Proposition 1 we see that if we have an upper
bound for RT l (y, x) and RT l (y, x) then this is also an upper bound for RT (y, x)
and RT (y, x). Since in this proof we are looking for an upper bound, by replacing
T with T l we can suppose that the map is topologically mixing).

To estimate the measure of the set N En
r (x) as in Lemma 3 let us consider a

Markov partition Z = {Zi } of X. Let Zn
m = T −m(Z ) ∨ · · · ∨ T −n(Z ). By uniform

hyperbolicity there are constants C, λ > 0 such that diam(Zn
−n) ≤ Ce−λn . By

this we know that when

n(r ) ≥ −λ−1(log r − log C)

the partition is of size so small that there is one element Z0 of the partition
Z = Zn(r )

−n(r ) which is included in B(x, r ).

Now N En
r (x) ⊆ Bn

0 = X − Z0 ∩ T −1(X − Z0) ∩ · · · ∩ T −n(X − Z0). We
remark that Bn

0 is the union of many cylinders and the measure of Bn
0 decreases very

fast because of the properties of the equilibrium measure µ. Indeed by Ref. (6) (see
p. 90) we know that since the map T can be supposed to be topologically mixing
then µ has the weak Bernoulli property: i.e. let us consider t, s ≥ 0 and the parti-
tions Ps = Z ∨ T −1(Z ) ∨ · · · ∨ T −s(Z ) and Qt = T −t (Z ) ∨ · · · ∨ T −t−k(Z ). For
each ε, if the time distance t − s = NZ (ε) is big enough, then the partitions
behaves as independent up to any prescribed error ε:

∑
P∈Ps ,Q∈Qt

µ(Q ∩ P) − µ(P)µ(Q) < ε. (3)

Moreover by Ref. (6), Theorem 1.25 we can find an estimation for NZ (ε) as
a function of ε (see Ref. (6), p. 38): NZ (ε) = −c log(ε) + c′, where c, c′ are
constants depending on µ, T and Z .

To estimate µ(Bl
0) by cylinders of Z we now remark the fact that a non

empty cylinder for the partition Z = Zn(r )
−n(r ) is also a cylinder for the partition Z .

Indeed the cylinder zm = Zi1 ∩ T −1(Zi2 ) ∩ · · · ∩ T −m−1(Zim ) , Zi ∈ Z satisfies
zm = zm+2n where zm+2n = T n(Z j1 ) ∩ T n−1(Z j2 ) ∩ · · · ∩ T −m−1−n(Z j(m+2n) ) is a
cylinder of Z and Zik = T −k+n Z jk ∩ · · · ∩ T −k−n Z jk+2n . Since µ is preserved
then µ(T −k+n Z jk ∩ · · · ∩ T −k−n Z jk+2n ) = µ(T −k Z jk ∩ · · · ∩ T −k−2n Z jk+2n ) hence
we can apply the weak Bernoulli property to such cylinders obtaining that also Z
satisfies such a property and

NZ (ε) ≤ −c log(ε) + c′ + 2n (4)
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(where c, c′ are the constants of NZ (ε) as above). We recall that n depends on r
and we can choose n(r ) ≤ −λ−1(log r − log C).

By Eq. (4), the measure of a long cylinder will be estimated by applying many
times the Bernoulli property considering a sequence of errors ε(n) as in Lemma 5
and the corresponding NZ (ε(n)).We will estimate the measure of a long cylinder
Zi1 ∩ T −1(Zi2 ) ∩ · · · ∩ T −m−1(Zim ) by considering it included in the intersection
of subcylinders given by

Zi1 ∩ T −NZ (ε(1))
(
ZiNZ (ε(1))

) ∩ T −NZ (ε(1))−NZ (ε(2))
(
ZiNZ (ε(1))+NZ (ε(2))

)
, . . .

whose time distance from the previous to the next intersecting cylinder is such
that Eq. (3) can be applied with the given errors ε(n). Let us then apply the
weak Bernoulli property of Z to get an estimation for µ(Bl

0). Let us set m =
µ(X − Z0) and ε(i) = 2i+1

i2(i+1)2 = 1
i2 − 1

(i+1)2 . We have (Eq. 4) that setting C ′(r ) =
c′ − 2λ−1(log r − log C) then

NZ (ε(i)) ≤ −c log(ε(i)) + c′ + 2n(r ) = −c log

(
2i + 1

i2(i + 1)2

)
+ C ′(r )

and for i > 1 there is a C2 s.t. NZ (ε(i)) ≤ C2 log(i) + C ′(r ).
Let us set ηi = ∑

j≤i NZ (ε( j)). To compact formulas we remark that when
r is small, for each δ there is a K not depending on r such that, if i is big enough

ηi ≤ −K i1+δ log r. (5)

As said before, the measure of Bηi

0 can then be estimated applying i times the
weak Bernoulli property, with ε(i) = 2i+1

i2(i+1)2 as above, to subcylinders of increas-
ing length NZ (ε(1)), NZ (ε(1)) + NZ (ε(2)), NZ (ε(1)) + NZ (ε(2)) + NZ (ε(3)) · · ·
obtaining by the Bernoulli property of µ

µ
(

B N (ε(1))
0

)
≤ m2 + ε(1),

µ
(

B N (ε(1))+N (ε(2))
0

)
≤ (m2 + ε(1))m + ε(2),

µ
(

B N (ε(1))+N (ε(2))+N (ε(3))
0

)
≤ ((m2 + ε(1))m + ε(2))m + ε(3), . . .

Hence by Lemma 5 above

µ
(
Bηi

0

) ≤ m[ i
2 ]

1 − m
+ 4

i2
.

We remarked that N En
r ⊂ Bn

0 . If we consider another element Z1 of
Z with Z1 ⊂ B(x, r ) and Bn

1 = X − (Z0 ∪ Z1) ∩ T −1(X − (Z0 ∪ Z1)) ∩ · · · ∩
T −n(X − Z0 ∪ Z1)), we have also N En

r ⊂ Bn
1 ⊂ Bn

0 . Now considering a sequence
Z0, . . . , Zw of elements of Z with Z0, . . . , Zw ⊂ B(x, r ) and Bn

w = X ∩ T −1(X −
(Z0 ∪ · · · ∪ Zw)) ∩ · · · ∩ T −n(X − (Z0 ∪ · · · ∪ Zw)), we have also N En

r ⊂ Bn
w.
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The measure of Bn
w can be estimated as above, obtaining µ(Bηi

w ) ≤ m[i/2]
w

1−mw
+ 4

i2 ,

where mw = µ(X − (Z0 ∪ · · · ∪ Zw)).
Now, refining again the partition Z if necessary (as before this is possible

because the diameter of each element of Z−n
n is less or equal than Ce−λn, and this

will only change the constants in NZ (ε)) we can suppose that each piece of the
partition has diameter less than r/4. We then have that we can choose Z0, . . . , Zw

such that B(x, r
2 ) ⊂ Z0 ∪ · · · ∪ Zw ⊂ B(x, r ). Then µ(X − (Z0 ∪ · · · ∪ Zw)) ≤

µ(X − B(x, r
2 )). This gives,

µ
(
Bηi

w

) ≤
(
1 − µ

(
B

(
x, r

2

)))[ i
2 ]

µ
(
B

(
x, r

2

)) + 4

i2
.

By Eq. (5) we then have i ≥ η
1/1+δ

i

(K log r/4)1/1+δ , by this, setting r = 2−n

µ
(
N E [µ(B(x,2−n ))−1−ε ]

2−n

) ≤ µ
(
B[µ(B(x,2−n ))−1−ε ]

w

)

≤ (1 − µ(B(x, 2−n−1)))[
1
2 (K n+log 4)−1/1+δµ(B(x,2−n ))−1−ε/1+δ]

µ(B(x, 2−n−1))

+ 4

(K n + log 4)−2/1+δµ(B(x, 2−n))−2−2ε/1+δ
.

When n is big, recalling that δ can be chosen as small as we

want and hence smaller than ε, then µ(N Eµ(B(x,2−n ))−1−ε

2−n ) is less than

about (e−1)K n
−1
1+δ µ(B(x,2−n ))−ε+δ/1+δ

µ(B(x,2−n−1)) + 4(K n + log 4)2/1+δµ(B(x, 2−n−1))
2+2ε/1+δ

since

d(x) > 0 then µ(B(x, 2−n)) decreases exponentially fast and we have∑
n

µ(N Eµ(B(x,2−n ))−1−ε

2−n ) < ∞. This is enough to apply the Lemma 3 and have

the required statement. �

4. INTERVAL EXCHANGES

Interval Exchanges are particular bijective piecewise isometries which pre-
serves the Lesbegue measure. In this section we apply a result of Boshernitzan
about a full measure class of uniquely ergodic interval exchanges to prove equality
between hitting time and dimension for almost each point. We refer to Ref. (4) for
generalities on this important class of maps.

Let T be some interval exchange. Let δ(n) be the minimum distance between
the discontinuity points of T n. We say that T has the property P̃ if there is a
constant C and a sequence nk such that δ(nk) ≥ C

nk
. Let us recall the above cited

result and some facts we are going to use in this section:
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Lemma 6. (by Ref. (4)) The set of interval exchanges having the property P̃ has
full measure in the space of interval exchange maps.

Lemma 7. If T is an interval exchange then for almost each point x then

R(y, x) = R(y, T (x)) and R(y, x) = R(y, T (x))

holds for almost each y.

Proof: If x and T (x) are not discontinuity points then T is an isometry be-
tween a small neighborhood of x and a small neighborhood of T (x). Thus, when
d(T j (y), x) is small it holds d(T j (y), x) = d(T j+1(y), T (x)) and the statement
then follow directly from the definition of R(y, x) and R(y, x). �

Lemma 8. Let T be an interval exchange having the property P̃. There is a
positive measure set B ⊂ [0, 1] such that for each x ∈ B there is a subsequence
nki such that for each i

min
h, j≤ nki

2 , h 
= j
d(T −h(x), T − j (x)) ≥ C

2nki

, and min
h≤ nki

2

d(T −h(x), x0) ≥ C

4nki

for each discontinuity point x0.

Proof: Let x0 be a discontinuity point. Let us consider the sets

Jk = ∪i≤ nk
2

[
T −i (x0) + C

4nk
, T −i (x0) + C

2nk

]

if T has the property P̃ these intervals are disjoint and then µ(Jk) ≥ C
8 . More-

over, for each i ≤ nk the interval [T −i+1(x0), T −i+1(x0) + C
2nk

] is mapped by

T −1 isometrically onto [T −i (x0), T −i (x0) + C
2nk

]. This is because still by prop-

erty P̃ for i ≤ nk all T −i iterates of x0 are at a distance greater than C
nk

from all the discontinuity points (included x0 itself). Hence if x ∈ Jk then
minh, j≤ nk

2 ,h 
= j d(T −h(x), T − j (x)) ≥ C
2nk

and d(x, x0) ≥ C
4nk

, moreover if xi is a

discontinuity point for T then minh≤ nk
2

d(T −h(x), xi ) ≥ δ(nk) − C
2nk

≥ C
2nk

. Since

µ(Jk) ≥ C
8 there is a positive measure set B of points such that x ∈ B implies that

x belongs to infinitely many Jk and hence for those x there is a subsequence nki

as in the statement. �

Theorem 9. If an interval exchange transformation T is ergodic and has the
property P̃ then for almost each point x it holds R(y, x) = 1 for almost each
y ∈ [0, 1].
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Proof: The inequality R(y, x) ≥ 1 follows by Theorem 2. For the other in-
equality, let x ∈ B (as in Lemma 8), let us consider the following L j =
∪i≤ 1

2 nk j
B(T −i (x), C

8nk j
) similar to before, by Lemma 8 this is made of disjoint

intervals and µ(L j ) ≥ C
16 hence there is a positive measure set B ′ of points be-

longing to infinitely many L j . Moreover if y ∈ L j then y ∈ B(T −i (x), C
8nk j

) with

i ≤ 1
2 nk j . By Lemma 8 since min

h≤ nki
2

d(T −h(x), x0) ≥ C
4nki

for each discontinuity

point x0 we have that d(T i (y), x) ≤ C
8nk j

. If y ∈ B ′ then there is a sub sequence

nk ji
giving τ C

8nk ji

(y, x) ≤ 1
2 nk ji

. This implies that R(y, x) ≤ 1 for x ∈ B and y

varying in a positive measure set B ′ and hence by ergodicity for almost each
y. By Lemma 7 and ergodicity we conclude that the statement hold for almost
each x . �

Remark. With the same proof as above, using property P̃ directly on disconti-
nuity points we can also obtain.

Proposition 10. If T has the property P̃, for each discontinuity point x0 it holds
R(y, x0) = 1 for almost each y ∈ [0, 1].

In interval exchanges the only source of initial condition sensitivity is the
discontinuity (the orbits of two points can be only separated by a discontinuity)
we remark that an estimation of the approaching speed of typical orbits to the
discontinuity is useful to estimate the kind of initial condition sensitivity and the
kind of “weak” chaos that is present is such maps. The theorem above in some
sense can give (using the construction done in Ref. (2)) an upper bound on the
initial condition sensitivity of interval exchanges. We will not go into details about
this point in this work, however.

5. HITTING TIME AND BIRKOFF SUMS

Let (X, T ) a measure preserving transformation on a metric space X, x0 ∈
X and let us consider a measurable function f : X − {x0} → R satisfying the
following

• f is bounded outside each neighborhood of x0 and f ≥ 0
• 0 < lim

x→x0

f (x)
d(x,x0)−α < ∞ ( f has a vertical asymptote in x0 where f (x) ∼

d(x, x0)−α)
• α > dµ(x0) (which implies

∫
X f dµ = ∞).

By the ergodic theorem we know that for almost each x the Birkoff average
Sn (x)

n = 1
n

∑n
i=0 f (T i (x)) is such that Sn (x)

n → ∞. We can have an estimation for
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the speed of increasing of Sn (x)
n by the behavior of the hitting time indicator

R(x, x0).

Theorem 11. Let us suppose X, x0, f as above then for each x

α

R(x, x0)
≤ lim sup

n→∞
log(Sn(x))

log(n)
≤ α

R(x, x0)
+ 1

α

R(x, x0)
≤ lim inf

n→∞
log(Sn(x))

log(n)
.

Before the proof, let us recall a result from Ref. (2) which is also related to
Theorem 2.

Lemma 12. Let (X, µ, d, T ) be a measure preserving transformation on a metric
space, and, x ∈ X. If β > 1

dµ(x) then for µ-almost every y ∈ X we have

lim inf
n→∞ nβ · d(x, T n y) = ∞.

Proof of Theorem 11: By Lemma 12 it holds that for each ε > 0, if n is big

enough d(T n(y), x0) ≥ n− 1
R(y,x0) −ε

. Now we remark that by the assumptions on f
there are c1, c2 such that f (x) ≤ max(c1, c2d(x, x0)−α). Then if n is big enough

n∑
i=0

f (T i (y)) ≤
n∑

i=0

max(c1, c2d(T i (y) − x0)−α)

≤
n∑

i=0

max(c1, c2nα/R(y,x0)+αε)

and we have lim supn→∞
log(Sn (x))

log(n) ≤ α
R(y,x0) + 1. To prove the lower bounds we re-

mark that by definition of R(y, x0) we obtain that eventually τr (y, x0) ≤ r−R(y,x0)−ε

and then for each small r there is nr ≤ r−R(y,x0)−ε such that d(T nr (y), x0) ≤ r .
Let us consider a sequence rm = m1/−R(y,x0)−ε, then nrm ≤ m and we have
that mini≤m(T i (y), x0) ≤ rm and then eventually

∑n
i=0 f (T i (y)) ≥ c3nα/R(y,x0)+ε,

which gives α

R(x,x0)
≤ lim infn→∞

log(Sn (x))
log(n) . On the other hand, by the definition of

R(y, x0) we have that ∀ε there is a sequence of times ni s.t. d(T ni (y), x0) ≤
n−1/R(y,x0)+ε

i , then there is some c3 such that frequently
∑n

i=0 f (T i (y)) ≥
c3nα/R(y,x0)−αε , which proves the last statement left. �
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We end with some upper bound on the behavior of lim inf k→∞
log(Sn )
log n . Now

we give a general Lemma which is used in the following, because of its generality
it is also interesting by itself.

Lemma 13. Let ε, c > 0 and ak = c
k1/dµ(x)+ε . Let us consider the truncated func-

tions

fk(x) =
{

f (x) if d(x, x0) > ak

0 if d(x, x0) ≤ ak
,

with the L1 norm ‖ fk‖ = ∫
X fkdµ. Then, if c is small enough, there is a set A

such that µ(A) ≥ 1
4 and for all x ∈ A

lim inf
k→∞

Sk(x)

‖ f1‖ + ‖ f2‖ + · · · + ‖ fk−1‖ + ‖ fk‖ ≤ 4.

Proof: Let Ac = {x ∈ X, s.t. ∀n ≥ 0 T n(x) /∈ B(x0, an)}. By the above
Lemma 12 if c is smaller and smaller then µ(Ac) → 1, hence there is a c > 0
such that µ(Ac) ≥ 3

4 .

Let us consider f̃k(x) = f1(x)+ f2(T (x))+···+ fk (T k−1(x))
‖ f1‖+‖ f2‖+···+‖ fk‖ , since T is measure pre-

serving this is a sequence of functions whose L1 norm is 1.
Let us consider f̃ (x) = lim inf k→∞( f̃k(x)). By the Fatou Lemma || f̃ (x)|| ≤ 1

and then f̃ (x) ≤ 4 on a set B whose measure is such that µ(B) ≥ 3
4 . We remark

that if x ∈ Ac then for each k

f1(x) + f2(T (x)) + · · · + fk(T k−1(x)) = f (x) + f (T (x)) + · · · + f (T k−1(x)).

Then f̃ k = lim inf k→∞
f (x)+···+ f (T k−1(x))

‖ f1‖+···+‖ fk‖ on Ac and then lim inf k→∞ ×
f (x)+···+ f (T k−1(x))

‖ f1‖+···+‖ fk‖ ≤ 4 on the set A = Ac ∩ B whose measure is greater than 1
4 . �

We remark that in the above proof T is not supposed to be ergodic.

Theorem 14. If X is an n dimensional manifold and the invariant ergodic
measure µ is absolutely continuous, with a bounded density in a neighborhood of
x0 and dµ(x0) = n, then for a.e. x

lim inf
k→∞

log(Sk(x))

log k
≤ α

n
.

Proof: Let fk be as in Lemma 13. Let us estimate the L1 norms ‖ fk‖ . For this
let us consider the measure of the set J�r = B(x0, r + �r ) − B(x0, r ), by the
assumptions on µ there is a K1 such that when �r is small we have that the
measure of J�r is less or equal than K1rn−1�r.
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Since there is some K2 such that f (x) ≤ K2d(x, x0)−α, setting r = d(x, x0)
we have, recalling that α > n∫

X
fkdµ ≤

∫ ∞

ak

K1 K2r−αrn−1dr = K1 K2

∫ ∞

ak

rn−α−1 dr = −K1 K2

n − α
an−α

k

By the definition of ak then there are constants C1, C2 such that

‖ fk‖ ≤ −K1 K2

n − α

(
c

k
1
n +ε

)n−α

≤ C1k−1−εn+ α
n +εα

and
k∑

i=1

‖ fk‖ ≤
k∑

i=1

i−1−εn+ α
n +εα ≤ C2k−εn+ α

n +εα

then, applying the Lemma 13 remembering that we can take ε to be as small as
wanted we have for x ∈ A

lim inf
k→∞

f (x) + · · · + f (T k−1(x))

k−εn+ α
n +εα

≤ 4C1C2

and then lim inf k→∞
log( f (x)+···+ f (T k−1(x)))

log k ≤ −εn + α
n + εα for each ε on the set

A having positive measure. The result follows by the ergodicity of µ. �

Remark 15. By the above results and the ones in the previous sections it easily
follows:

1. (by Theorem 2) In a general system, if the local dimension at x0 is dµ(x0).
Then for almost each x

lim sup
n→∞

log(Sn(x))

log(n)
≤ α

dµ(x0)
+ 1

2. (by Theorems 9 and 14) If T is an IET and x0 is typical or a discontinuity
point then for almost each x

α = lim inf
n→∞

log(Sn(x))

log(n)
≤ lim sup

n→∞
log(Sn(x))

log(n)
≤ α + 1

3. (by Theorem 4) If (X, T ) is axiom A (with an equilibrium measure, as in
Theorem 4), x0, x are typical and d 
= 0 is the dimension of the measure
then

α

d
≤ lim inf

n→∞
log(Sn(x))

log(n)
≤ lim sup

n→∞
log(Sn(x))

log(n)
≤ α

d
+ 1.

Remark 16. We remark that using Eq. (2) we can obtain as above similar lower
bounds for the behavior of Sn(x0) when x0 is a typical point.



124 Galatolo

ACKNOWLEDGEMENT

I wish to thank Corinna Ulcigrai , Jean Rene Chazottes and Stefano Marmi
for fruitful discussions, which allowed me to discover some relevant literature and
to simplify the proof of the main result.

REFERENCES

1. L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence. Commun.
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